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Abstract

We consider a dynamic hypertext as one that changes even in the absence of user activity. Hypertexts

are comprised of structure, content, and context, and dynamic operations may affect any of them.

Dynamic operations are synchronous (related to the hypertext’s description) or asynchronous. We call

the former timers and sensors. In this paper we argue that such dynamic characteristics are an impoitant

component of many hypertext systems, surveying existing implementations to examine the different

realizations of dynamic operations, and that dynamic plications are also of importance within the

hypertext domain.

Keywords: hypermedia, hypertext, sensors, temporal aspects, time, timers

1 Introduction

Information structured as a hypertext requires an interactive computer system for effective presentation.

However, the degree of interactivity permitted in the information structured by the hypertext and in the

hypertext itself varies from system to system. In some systems, the display of information is passive, i.e.,

imchanging except perhaps in direct response to a user’s request. In others, the information displayed may
incorporate dynamically-changing components (components that change, even in the absence of user input;

for example, animations). In these systems, however, it is possible that the selection of which information

is being shown will not change without user action. A further possibility for dynamic change in a hypertext

is therefore that the selection of displayed information elements may also be changing, even in the absence

of user activity.

In this paper, we will consider the characteristics of dynamic hypertexts and the differing capabilities of

their implementations. Our goal will be to argue that inclusion of such dynamic characteristics is required

if the full capabilities of hypertextual representation is to be achieved.

*Affiliated witb the Department of Computer Science and die Institute for Advanced Computer Studies at the University of

Maryland, College Park, MD. The portion of tiiis work carried out at die University of Maryland is based upon work supported

by die National Science Foundation under Grant No. CCR-8810312. It is also supported in part by a grant from the Northrop

Research and Technology Center. Address correspondence to Department of Computer Science, University of Maryland, College

Park, MD 20742.

^Affiliated with die Office Systems &igineering Group, Systems and Software Technology Division, National Computer

Systems Laboratory. Contribution of the National Institute of Standards and Technology. Not subject to copyright The mention of

commercial products in this paper is to describe the research environment and does not imply recommendation or endorsement by

the National Institute of Standards and Technology.
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We note as clarification that by our use of the term “hypertext,” we do not wish to imply that the

document is limited only to textual material. Indeed, we place no limits on the permissible kinds of content.

Documents may incorporate textual, graphical, video, audio, etc., material.

We will further specify what we mean by dynamic hypertext in the next section and discuss how such

characteristics are included in existing systems in Section 3. Finally, in Section 4, we describe some useful

applications that can be accomplished only with dynamic hypertext.

2 Hypertext and dynamic hypertext

Our notions of what makes up a hypertext were presented earlier in our description of a high-level reference

model for hypertext [FS90a], and will be summarized here. Abstractly, the hypertext can be separated into

structure^ content^ and context [FS89, Fur89]. The term “structure” may initially convey a bit too rigid

an image of the hypertext. The structure defines the relationships among elements of the hypertext. A
natural representation is a graph-like data structure, but it is also possible that it may be implemented by

non-graph-based means, for example as the result of a computation.

We further separate the content of the hypertext firom the structure—the structure therefore must contain

‘"placeholders” that are associated with specific content elements. The relationships described by the

structure must be presented to the hypertext*s reader to permit traversal of the structure. The context is the

representation of these relationships within the displayed content.

Viewed from the perspective of this framework, a hypertext system may incorporate dynamic behavior

in any of the three parts: structure, content, and context. The most commonly-found dynamic behavior

afreets the content of the hypertext. In addition to the example of animation, mentioned earlier, dynamic

displays may also be used m showing the results of continuing computations, may obtain information

interactively from the hypertext’s reader, etc.

Dynamic representation of context may also be useful. For example consider the representation of

an anchor^ that changes over time. The anchor may be represented by a highlighted region whose color,

size, or location changes over time to draw more attention to itself. Alternatively, the anchor might be

represented by a small animation.

An application that naturally benefits from dynamic structure is that of structured presentations. For

an example, see Zellweger’s Scripted Documents system [Zel87, Zel88, 2^189]. Dynamic structure may

also be used in constraining aspects of a reader’s browsing session—^for example limiting the amount of

time that a particular information element can be accessed or alternatively insuring that a particular piece

of information is encountered during each time increment.

We have informally defined dynamic operations to be those that proceed in the absence of user activity.

A second dimension in the behavior of a hypertext system are the means provided for controlling operations.

Two different means can be identified by which activities can be initiated and controlled: user-controlled

and system-controlled. Of these, user-controlled events are static (i.e., take place only in response to a

user’s actions), while the system-controlled events are dynamic (i.e., take place independently of a user’s

actions, although they may be enabled by a user’s action).

The class of dynamically-controlled operations on structure, content, and context may be considered

as comprised of those system-initiated events that are controlled synchronously and those controlled

^Anchor is the commonly-used tenn for the tenninal points of a link. It additionally conveys the sense that such a terminal point

identifies an “interior" poition of a content element—a word or phrase, a feature in a diagram, or an individual sound in an audible

passage. A link represents a relationship between elements of the content—i.e., as representedby the hypertext’s structure.
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asynchronously. “Synchronous” and “asynchronous” are defined here relative to the description of the

hypertext. Analysis of the hypertext can theoretically determine when synchronously-controlled events

will occur, relative to a given traversal of the hypertext by a reader.^ Asynchronously-controlled events are

invoked independently of the hypertext’s description—^for example in response to an externally-generated

event that has been detected by a separate process. As a shorthand notation that reflects the differences

in specification, we will say that synchronously-controlled events are controlled by timers and that

asynchronously-controlled events are controlled by sensors. In other words, when an event is controlled

by a timer, its actions are specified based on the clock—it may be invoked at a particular time, terminated

after being active for a certain amount of time, etc. When an event is controlled by a sensor, its actions

are dependent on externally-generated signals. Such events may be invoked, for example, when values

produced by some external process exceed a specified threshold value, when some device is activated or

deactivated, etc.

Timer-controUed and sensor-controlled events are not mutually exclusive, of course. Particular

applications can certainly be thought of that depend on both.

3 Dynamic aspects of hypertext systems

In this section, we will consider what dynamic behaviors are incorporated into particular hypertext systems.

For each system, we will consider the availability of dynamic effects within structure, content, and context,

and then will consider the control mechanisms provided (i.e., whether the system provides the means to

implement timers and sensors).

3.1 Hyperties

Hyperties [Shn87, Cog88] is a commercially-available hypertext system for the IBM-PC. The primary

focus in the Hyperties design seems to be to provide a system with an intuitively-imderstandable and

accessible user interface. Hyperties version 2.35 ’s screen design is predictable and consistent, and perhaps

intentionally not particularly extensible. (Apparently Hyperties version 3.0 will be far more extensible,

possibly at the expense of this design consistency).

Hyperties only provides rudimentary support for dynamic content and no support for dynamic structure

or dynamic context. In Hyperties 2.35, one is limited to swapping to an external videodisk sequence,

replacing the Hyperties display with the display of the videodisk images. When the sequence terminates,

the Hyperties browsing session resumes, overlaying Hyperties* buttons over the last frame of the sequence.

Communication between Hyperties and the external world is purely one-directional—^Hyperties can specify

the bounds of the sequence to be controlled, but no information is passed back into Hyperties from die

external process.

Hyperties does not permit specification either of timers or of sensors.

3.2 HyperCard

The philosophy behind the design of Apple’s HyperCard [App87] is quite different from that of Hyperties.

HyperCard’s emphasis, as reflected by the features of HyperTalk [App88], the specification language

for HyperCard, is on providing a general-purpose implementation base on which to build interactive

^We recognize that in practical terms, the analysis may be too computationally expensive to actually carry out.
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applications. Indeed, HyperCard edges the boundary between Hypertext system and general-purpose

programming environment.^

HyperCard’s primitive objects are buttons (selectable objects) and fields (containing text). These are

placed onto cards or onto backgrounds. The display seen by a user is formed by combining a card with a

background. Cards are contained in stacks, and one stack is distinguished as the **home stack.” HyperTalk

is based on an event-driven paradigm, with messages passing along a hierarchy until an appropriate handler

is encountered. In general, messages seeking a handler pass first to the buttons or fields, and then to the

card, the background, the stack, the home stack, and then to HyperCard itself. It is also possible to send

messages to objects not in the current hierarchy, in which case the hierarchy associated with the receiving

object is used to handle the message.

HyperCard also permits invocation of externally-defined routines. The externally-defined routine can

communicate with the HyperCard-defined world, as messages can be passed between the externally-defined

routine and HyperTalk-defined routines.

Since HyperTalk is a general-purpose programming language, system-defined facilities can be used

to implement djmamic structure, content, and context. Particular support is provided to implement both

timers and sensors. Timers can be based on functions such as seconds and ticks. Messages such as

mouseDown, mouseStillDown, and mouseUp can be used to create sensors that base processing on

such user actions.

Handlers based on the idle message, which is generated repeatedly when no user activity is going

on, can be used to implement actions that proceed in the apparent absence of external activity. However,

implementation of time-based events, such as automated backups or automatic updates of displayed

information, requires cooperation between the programmers of the events and the programmers of the

hypertext document being examined—^for example, messages such as idle could be trapped by a handler

written by the document programmer, and would not then be passed along to the handler associated with

the event.

3.3 HyTime and SMDL

The Standard Music Description Language (SMDL) is intended to represent musical documents to enable

interchange [New90, Ber90, GNST90]. It is being defined in the notation of the SGML [IS086] document

type definition (in essence, as an attributed context-free grammar). A portion of SMDL, a notation for

connecting together and synchronizing different simultaneously-active time-based events has been separated

out and called “HyTime” (for “HypermediaATime-based Document Language”) [GT90, GN90].

It is difficult to cast HyTime and SMDL in the framework of structure, content, and context. The

questions about how the context is to be represented appear to be outside of the current scope of the SMDL
activities. Structure and content are considered but the distinctions between structure and content are

blurred. It appears that a work of music is being thought of as a number of separate but related threads. If

an element of the hypertext’s content is taken to be a major division of the work (say a movement), then the

domain of Hyllme is largely within the content, and consequently the content is dynamic. If the element is

an individual component of a thread, then the HyTime operations are structural. What is clear, in any case,

is that the musical domain can require specification of both dynamic content and dynamic structure.

HyTime defines a rich set of components for representing time. HyTime permits definition of a set of

clocks, which may be divided into those that are based on “real time” and those that are based on “musical

time.” Clocks based on real time are directly related to actual time. However, those clocks based on

^We have discussed some of the characteristics of this boundary elsewhere in the context of our own Trellis system [FS90b].
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musical time are based on a more abstract time, measured in virtual time units, that may have no inherent

equivalent in real time units. Presumably even if a correspondence between real and musical time exists at

a particular point in the score, this correspondence may be changed by changes to the presentation’s tempo.

Although the separate musical clocks can proceed in asynchrony, it is also possible to specify that they are

to be synchroni2:ed at particular points in the score.

The primary focus of HyTime primitives is to provide timer-related mechanisms and not sensor-related

mechanisms. The timers that can be specified can be quite complex, for example HyTime permits specifying

that an event is to last until the beginning of another event (“duration imtil”). The overall emphasis of the

SMDL effort suggests that timers are far more important to music than are sensors.

3.4 IVellis

Our own work has defined the Trellis model of hypertext [SF89, SF90]. A significant characteristic of the

Trellis model, which is based on the Petri net, is its natural and integral rqjresentation of concurroicy and

synchronization. This permits specification of hypotexts in which multiple cont^t elem^ts are active at

the same time, invoked and removed either indq>^d^tly or in a concuir^t fashion, based on the author’s

specification.

Content in Trellis is arbitrary in form and can be dynamic. The basic model has been augmented

with timing specifications that can automatically select links after a certain amount of time has passed and

also can prohibit access to a link for a certain amount of time. Consequently, the Trellis model directly

incorporates a form of dynamic structure.

The prototype implementations of the Trellis hypertext model, the aTrellis and yPrellis systems, are

based on a client/server model. In the prototypes’ architectures, the server contains an “engine” that

implements the Trellis model. Zero or more clients communicate with this engine via remote procedure

call invocations. Several different classes of clients have been developed to take advantage of particular

elements of the operating environment. The most frequently used client, for example, permits text browsing,

interactive process invocation, and link traversal. A graphics-based client shows associated images on

a separate specialized display. Note that if two instances of the same class of client are associated with

a particular server, the display seen by each client (and the functionality provided to the browser) is a

duplicate of the other’s. This permits an initial method for providing a distributed hypertext that can be

browsed by simultaneous and cooperating browsers.^ In the current prototypes, all clients are kept informed

about the current state of the browsing session (i.e., which content elements are active and which links are

selectable). Decisions about which portions of the browsing state to display are made by the clients, not the

server.

The Trellis model directly incoiporates timers. Sensors are implemented through application of the

client/server architecture. A process implementing a sensor will behave as an independent browser, using

a program-callable interface to communicate its state changes to the server (and consequently to the other

browsers) by selecting links. Note that as the sensor is a client, it has access to the current state of the

hypertext and can base its decisions on that information, if appropriate.

is entirely possible and expected that simultaneously-active clients will result in cases in which concurrent actions cause

conflict Such conflicts are handledby flie server. Implementation of this resolution is made paiticulaily easy by the organization

of the server as a collection of abstract data types.

5



3.5 Scripted documents

Zellweger’s scripted document system [Zel87, Zel88, Zel89] permits overlaying active paths through a

set of documents and within a single document. While the term “document” is used in a traditional way,

an arbitrary action can be associated with the subsequent presentation of the document; i.e., an action

can invoke an arbitrary computer application, including those that produce dynamically-changing displays.

Consequently, this provides a form of dynamic content.

Paths are described by a script, which consists of a sequence of entries describing the steps along

the path. Each entry in the script is described by a template, which includes fields permitting invocation

of an arbitrary action and specification of the sequencing behavior on subsequent playback of the path.

The sequencing behavior, in other words the process by which the playback steps along the entries in the

path, can be application-based (i.e., waiting imtil the application terminates or time-based sequencing (i.e.,

continuing after a specified period of time), and reader confirmation can also be required before stepping.

Paths, therefore, provide direct support for dynamic structme and can be used to implement dynamic

context. However, the primary support is for timer-controlled events rather than sensor-controlled events.

While timer behavior is specified directly in the script entry, it appears that only a limited form of sensor

is provided. The script may invoke any program, but it appears that the communication from the program

to the script is limited to notification of completion. The strength of scripted documents, therefore, is

in the organization of material from potentially heterogeneous sources for automated or semi-automated

presentation in a structured fashion.

3.6 PROXHY

Kacmar has implemented PROXHY (for “PRocess-based Object-oriented extensible HYpeitext system”)

[Kac90], which is based on a general hypertext architecture defined by Leggett. PROXHY is designed

aroimd an integrated process message-passing model and object-oriented class-instance inheritance model.

The general model distinguishes anchors, links, and information elements within the hypertext. In

PROXHY, the information elements can be applications, for example animations, and the anchors can

invoke a program (i.e., both content and anchors can be dynamic). In our categorization, then, this provides

direct support for dynamic content and dynamic context. It is unclear whether PROXHY supports dynamic

structure, but even if not it appears that it could be added. In other words, dynamic structure appears

compatible with the capabilities of the PROXHY link.

The focus in the PROXHY description is presenting the architecture of the general hypertext and of the

PROXHY implementation, as well as describing the manner in which the objects that implementPROXHY
communicate. Issues of timers and sensors are not directly addressed, but again inclusion of timers and

sensors appears compatible with the architectures.

3.7 The Dexter model

The Dexter hypertext model [HS90] is not an abstraction of one specific implementation or family of

implementations. It is of particular importance, however, to mention because it is an abstraction derived

from the collective experience ofmany researchers implementing over a dozen (fairly diverse) systems. In

this model, the notion of apresenter encapsulates dynamic content. A presenter is a function associated with

a node in a hypertext. This function is applied to its content element to produce information in consumable

form during browsing. A presentation function can be as simple as dumping text to a window, or it can be

a dynamic program such as an editor, an animator, or some visualization tool. Timers are not specifically
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mentioned in the Dexter model. Sensors can be accomplished as in Trellis, with programs acting as virtual

users interacting with the base engine of a document.

4 Hypertext application of timers and sensors

In this section, we will consider a number of timer and sensor dependent applications that one might wish to

include in a hypertext system. While each of the applications can be presented as a special-purpose feature

of a given hypertext implementation, we suggest that a general implementation of timers and sensors will

permit the direct expression of these activities.

Structured presentations

As noted in the discussion of Zellweger’s scripted documents, structured presentations are a natural

application of tim^. Such presentations can be relatively self-directed (e.g., a d^onstration that plays

continuously) or relatively int^active (e.g., a d^ionstration that changes as requested by the reader).

Similarly, structured presentations may be usefully imbedded within larg^ pres^tations, peih^s ev^ as

implementation of simple animations.

Reflecting external events

The direct use of sensors is to permit reflection within a hypotext of events that occur outside of the

hypertext. As a simple example, the sensor can be used to implement a trigger, perhaps giving notification

to the reader when some event occurs by causing the system to ‘hrowse” the document concurrently with

the reader thereby giving visual or audible cues. As a further example, in a software-engineering-oriented

environment, sensors can be used to cause the hypertext system to parallel the activities being carried out,

thereby providing appropriate informative displays automatically at each step of the process. It is, ofcourse,

a limitation to only consider display of information. Coupled with dynamic content, it may be possible

to actually implement sophisticated shell-script-like controllers with sensors that invoke processors when

required by the creation or modification of data.

Time-limited events

HyTime and scripted documents have provided excellent examples of use of timers to limit events. Two
situations are immediate: those in which the timer is used to guarantee that some event takes a certain

amoimt of time, and those in which the timer is used to insure that the event completes within a specified

amount of time. Such capabilities are also useful in controlling interfaces with hardware devices—^for

example giving a CD-ROM Disk sufficient time to spin up, or insuring that the system is ready when the

next item of data is presented. In more sophisticated application, such limits might also be used to alter

the hypertext display, perhaps to skip over parts of the hypertext if some predefined limit was about to be

exceeded.

Periodic events

Timers can be used to invoke periodic events; for example a regular automatic backup of an actively-

changing hypertext. Note that if the period is very small (perhaps even instantaneous) then the event will

appear to occur automatically when some preconditions hold.
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Active help

Lemer [Ler89] has identified acti\e help in a user interface as help that is presented when it appears that the

reader has become confused, perhaps as reflected by long periods of inactivity. Clearly this is another form

of periodic event that can be implemented with timers, but one that is tied to specified user actions, perhaps

most appropriately detected by sensors.

5 Conclusions

In this paper, we have defined dynamic hypertext and have discussed the dynamic aspects of existing

hypertext systems. We believe that an important distinction in dynamic operations is whether they are

tied to the hypertext’s representation (called timers), or independent of the representation (called sensors).

Inclusion of timers and sensors in a hypertext implementation increases the flexibility of the resulting

system without requiring additional special-purpose functions. The resulting hypertexts may be used to

implement interactive applications that begin to approach those commonly expressed in a more conventional

programming language. Indeed, such hypertexts may be of use in situations where there are no human

readers at all; i.e., to control machine-based processes.
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